Ministerio de Ciencia e Innovación

Un equipo del CIBER-BBN, CIBERCV y CIBERONC desarrolla un sistema que predice la funcionalidad de un corazón artificial

El trabajo ha sido coordinado por el CIMA-Universidad de Navarra. En la imagen Manuel Mazo, Olalla Iglesias, María Flandes Iparraguirre y María del Pilar Montero Calle.
CIMA-UNAV | martes, 25 de octubre de 2022

Una colaboración de varios equipos de las áreas del CIBER de Cardiovasculares (CIBERCV), Cáncer (CIBERONC) y Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) ha desarrollado un sistema que, por primera vez, es capaz de predecir el comportamiento del tejido cardíaco fabricado en el laboratorio. Se trata de una novedosa herramienta in silico, es decir, un diseño que permite modelar, simular y visualizar por ordenador la evolución y funcionalidad del tejido cardíaco biofabricado. Este estudio se enmarca dentro del proyecto europeo BRAVƎ, coordinado desde el Cima Universidad de Navarra, y supone un avance en la construcción de modelos computacionales que permitan acelerar la fabricación en el laboratorio de un miocardio humano.

Los resultados de esta investigación aparecen publicados en el último número de la revista Biofabrication, una de las principales revistas científicas sobre bioingeniería y biomateriales. En ella han colaborado la Clínica Universidad de Navarra, el Instituto Universitario de Investigación en Ingeniería de Aragón, el Hospital General Universitario Gregorio Marañón, la Universidad de Western Australia y la University College de Londres.

Paso de gigante en ingeniería de tejidos cardíaca

Las enfermedades cardiovasculares siguen siendo la primera causa de muerte en todo el mundo, y las complicaciones relacionadas con el miocardio se encuentran entre las principales causas de retirada de fármacos, tanto en la clínica como en el proceso de desarrollo del medicamento. La medicina regenerativa trata de resolver este problema avanzando en la fabricación de tejido cardíaco humano para comprender qué origina daño al corazón y desarrollar fármacos y nuevas terapias más precisas para su tratamiento.

“Evaluar todas las variables que afectan al desarrollo de cada tejido fabricado requiere gran cantidad de tiempo y recursos. Así, nuestro objetivo en este trabajo era diseñar una herramienta de predicción basadas en información biológica y mecánica para agilizar este proceso”, explica Manuel Mazo, investigador del Programa de Medicina Regenerativa del Cima e investigador principal del trabajo.

Para diseñar esta novedosa herramienta los investigadores generaron minitejidos cardíacos humanos con diferentes características funcionales con el fin de introducir esta información en simulaciones por ordenador. “Al introducir la información biológica recopilada en novedosas simulaciones computacionales, nuestro trabajo establece el camino para avanzar en el desarrollo de herramientas in silico para predecir la evolución del tejido cardíaco biofabricado tras su generación, y traza la ruta hacia una fabricación de tejidos más precisa y biomimética”, concluye Mazo.

Este trabajo se enmarca dentro de los proyectos europeos en medicina regenerativa del Cima y de la Clínica Universidad de Navarra BRAVƎ (#874827), CARDIOPATCH (SOE4/P1/E1063) y POCTEFA LG-MED (EFA313/19). Ha contado con el apoyo de las áreas del CIBER de Cáncer (CIBERONC), de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) y de Enfermedades Cardiovasculares (CIBERCV). A su vez, ha recibido financiación del Ministerio de Ciencia e Innovación (CARDIOPRINT PLEC2021-008127), del Instituto de Salud Carlos III (cofinanciado con fondos FEDER), de la Red de Terapias Avanzadas (TERAV) y del Gobierno de Navarra, entre otras instituciones.

Artículo de referencia:

Montero-Calle P, et al. Fabrication of human myocardium using multidimensional modelling of engineered tissues. Biofabrication. 2022 Sep 14;14(4). doi: 10.1088/1758-5090/ac8cb3.